Skip to main content

TRAVELING WAVE ON A NONREALISTIC STRING


## Script that simulates a traveling wave on an nonrealistic string.
##The one end of the string is driven sinusoidally
## while the other end is kept fixed.
dx=1e-2; ## increment in horizontal displacement(m)
c=300; ## speed of the wave (m/s)
dt=dx/c; ## Increment in time (s)
r=c*dt/dx; ## Ratio of speed of wave to
## the speed of the string
## Initial profile
x=-1:dx:1;
y=zeros(size(x)); ## Change the gaussian distribution
## to get zero vertical
##displacements for all parts of
##the string.(purely flat initially)
plot(x,y)
pause
##For the sinusoidally driven end, given constans are:
A=0.5; ##amplitude(m)
rate=100; ## inverse of the period (cycles/s)
omega=2*pi*rate ; ## angular frequency(Radians/s)
## Time boundary conditions. Get previous and
## present displacement as initial profile
ynow=y;
yprev=y;
Nsteps=2000;
## all steps are the same for the loop as the string_fixed
## apart from the function ynext
for n=1:Nsteps
ynext=propagate_driven(ynow,yprev,r,omega,A,n,dt);
plot(x,ynext,';;')
axis([-1.05,1.05,-1.1,1.1])
pause(0);
yprev=ynow;
ynow=ynext;
endfor

Comments

Popular posts from this blog

NEWTON-RAPSON METHOD FOR HEAT FLOW

##Constants and initializations
a=5.67E-8; ## Stefan-Boltzman constant[Watt/meter^2Kelvin^4]
e=0.8; ## Rod surface emissivity [Dimensionless]
h=20; ## Heat transfer coefficient of air flow [W/m^2-K]
Tinf=Ts=25; ## Temperature of air and the walls of the close[Celcius]
D=0.1; ## Diameter of the rod[meter]
I2R=100; ## Electric power dissipated in rod (Ohmic Heat)[W]
T=[]; ## Temperature of the rod[*C]
T(1)=25; ## Initial guess of the temperature of the rod[*C]
Q=[]; ## Heat function [W]
Qp=[]; ## First derivative of Q wrt T [W/C*].
for i=1:100
Q(i)=pi*D*(h*(T(i)-Tinf)+e*a*(T(i)^4-Ts^4))-I2R;
Qp(i)=pi*D*(h+4*e*a*T(i)^3);
T(i+1)=T(i)-Q(i)/Qp(i); ## Newton-Rapson Method
endfor
printf('The steady state temperature is %f\n',T(i+1))
save -text HeatFlowTemp.dat
## The plot
t=1:100; ##temperature
for n=1:100
H(n)=pi*D*(h*(t(n)-Tinf)+e*a*(t(n)^4-Ts^4))-I2R;
endfor
plot(t,H)
xlabel('T(Celcius)');
ylabel('Q(Watt)');
legend('Q(T)');
title('Heat flow vs Temperatu…