Skip to main content

NEWTON-RAPSON METHOD-8th degree Legendre polynomial


## Newton-Rapson Method to the smallest non negative root
## of the 8th degree Legendre Polynomial
## P8(x)=(1/128)(6435x^8-12012x^6+6930x^4-1260x^2+35)
## where -1<=x<=1.
## for the smallest non negative root, we can ignore
## all the terms except the last two by truncated
## the function to be zero and find
## x=0.167 as the initial smallest non negative
## root.
##Constants and initializations
x=[]; ## Empty array for the iterated x roots
x(1)=0.16700000; ## Initial guess to begin the iteration for the
## smallest non-negative root.
L8=[]; ## Empty array for the Legendre polynomial
L8p=[]; ## Empty array for the derivative of the Legendre polynomial
for i=1:100
##The value of the function at x
L8(i)=(1/128)*(6435*x(i)^8-12012*x(i)^6+6930*x(i)^4-1260*x(i)^2+35);
##The value of the derivative of the function at x
L8p(i)=(1/128)*(6435*8*x(i)^7-12012*6*x(i)^5+6930*4*x(i)^3-1260*2*x(i));
x(i+1)=x(i)-L8(i)/L8p(i); ## the iteration
endfor
## For plot let's define a new variable t instead of x and P8(t) instead of L8
t=-1:0.01:1;
P8=(1/128)*(6435*t.^8-12012*t.^6+6930*t.^4-1260*t.^2+35);
plot(t,P8);
title('8th degree Legendre polynomial vs x');
xlabel('x');
ylabel('P8(x)');
legend('P8(x)');
printf('The smallest non-negative root of the 8th Legendre polynomial is=%f',x(i))
save -text NEWRAPLEGENDRE.dat
print('-dpsc','NEWRAPLEGENDRE.ps');

Comments

Popular posts from this blog

Simple Euler Method

##Usage:Call Octave from terminal ##and then call EulerMethodUmitAlkus.m ##from octave and finally ##press enter. That's all. ##Simple Euler Method ##Constants and initializations x=[]; ## initial empty vector for x y=[]; ## initial empty vector for y x(1)=1; ## initial value of x y(1)=1; ## initial value of y h=1E-3; ## increment in x dery=[]; ## 1st derivative of y wrt x n=1; ## inital loop index for while ## enter the while loop for the interval x=[1,2] while (x(n)<=2) x(n+1)=x(n)+h; dery(n+1)=x(n)*x(n)-2*y(n)/x(n); ##given y(n+1)=y(n)+h*dery(n); ##Euler method n++; endwhile ##exit from the 1st while loop ##Modified Euler Method ##Constant and initializations ymid=[]; ## empty vector function evaluated at x midpoint xmid=[]; ## empty vector func. of midpoints in x ymid(1)=1; ## inital value for ymid. derymid=[]; ## derivative of y at midpoints ##Enter the 2nd while loop n=1; while (x(n)<=2) xmid(n)=x(n)+h/2; derymid(n)=xmid(n)*xmid(n)-2*ymid(...

NEWTON’S METHOD FOR MINIMUM

##Newton's Method to find ##the minimum of the function F(x)=(x-2)^4-9 ##with the initial guess xmin=1.0 ##Constants and initializations xmin=[]; ##The empty array of x that minimizes the F(x) xmin(1)=1.0; ##Initial value of the xmin Fmin=[]; ##Minimum values of F(x) x=0.0:0.1:4.0; ##Only for plotting purposes F=[]; ##Our examined Function evaluated on x-space Fp=[]; ##First derivative of F(x) wrt x Fpp=[]; ##Second derivative o F(x) wrt x NSteps=50; ##Step number of iteration ##Algorithm for n=1:NSteps Fmin(n)=(xmin(n)-2)^4-9; Fp(n)=4*(xmin(n)-2)^3; Fpp(n)=12*(xmin(n)-2)^2; xmin(n+1)=xmin(n)-Fp(n)/Fpp(n); Fmin(n+1)=(xmin(n+1)-2)^4-9; endfor printf("x*, at which F(x) is minimum, is %1.6f\n",xmin(n+1)) printf("Minimum of F(x) is %1.6f\n",Fmin(n+1)) F=(x-2).^4-9; subplot(2,1,1) plot(x,F) title('Newton^,s Method-F(x) vs x'); xlabel('x'); ylabel('F(x)'); text(2,-7,'\downarrow') text(1.7,-5.6,'(xmin,Fm...

One Dimensional Harmonic Oscillator-Numerov Method

x=[]; h0=1; M=4; N=M+1; x(1)=0; x(N)=x(1)+h0*M; x=x(1):h0:x(N) A=zeros(N); A(1,1)=-2*(5*(x(N)*h0)^2/12+1); A(N,N)=-2*(5*(x(1)*h0)^2/12+1); A(1,2)=1-(x(M)*h0)^2)/12; A(N,M)=1-(x(2)*h0)^2)/12; B=zeros(N); B(1,1)=B(N,N)=-10*(h0^2)/6; B(1,2)=B(N,M)=-(h0^2)/6; for i=2:M B(i,i)=-10*(h0^2)/6; B(i,i-1)=B(i,i+1)=-(h0^2)/6; A(i,i)=-2*(5*(x(N+1-i)*h0)^2/12+1); A(i,i+1)=1-(x(N-i)*h0)^2)/12; A(i,i-1)=1-(x(N+2-i)*h0)^2)/12; end A B