Skip to main content

RANDOM WALK GENERATOR


## This function
## provides us with very simple
## random walk generator compared
## to the function rand_disc_loop
## which is time-consuming, in operation,
## long, and unuseful for other than the
## coin toss simulatons
function xy=rand_disc(N); ## RW generator.
r=floor(rand(N,1)*4); ## Random coulumn vector of N
## integer elements
## multiplied by 4 to widen the
## interval from [0,1] to [0,3].
x=y=zeros(size(r)); ## The coulumn vectors
## of N elements with all elements zero.
x(find(r==0)) = 1; ## The elements of x,
## the vector function
## which takes in the row #
## of the zero elements of
## the vector r as an argument,
## is assigned to 1.
x(find(r==1)) =-1; ## The elements of x,
## the vector function
## which takes in the row # of the
## elements of 1 of the vector r
## as an argument,
## is assigned to -1.
y(find(r==2)) = 1; ## The elements of y,
## the vector function
## which takes in the row # of the
## elements of 2 of the vector r
## as an argument,
## is assigned to 1.
y(find(r==3)) =-1; ## The elements of y,
## the vector function
## which takes in the row # of the
## elements of 3 of the vector r
## as an argument,
## is assigned to -1.
xy=[x y]; ## The resulting x by y
## matrix of a random walk
## with elements 1 and -1.
endfunction

Comments

Popular posts from this blog

Simple Euler Method

##Usage:Call Octave from terminal ##and then call EulerMethodUmitAlkus.m ##from octave and finally ##press enter. That's all. ##Simple Euler Method ##Constants and initializations x=[]; ## initial empty vector for x y=[]; ## initial empty vector for y x(1)=1; ## initial value of x y(1)=1; ## initial value of y h=1E-3; ## increment in x dery=[]; ## 1st derivative of y wrt x n=1; ## inital loop index for while ## enter the while loop for the interval x=[1,2] while (x(n)<=2) x(n+1)=x(n)+h; dery(n+1)=x(n)*x(n)-2*y(n)/x(n); ##given y(n+1)=y(n)+h*dery(n); ##Euler method n++; endwhile ##exit from the 1st while loop ##Modified Euler Method ##Constant and initializations ymid=[]; ## empty vector function evaluated at x midpoint xmid=[]; ## empty vector func. of midpoints in x ymid(1)=1; ## inital value for ymid. derymid=[]; ## derivative of y at midpoints ##Enter the 2nd while loop n=1; while (x(n)<=2) xmid(n)=x(n)+h/2; derymid(n)=xmid(n)*xmid(n)-2*ymid(...

FACTORIAL

## Function that calculates the factorial of a number ## Usage : f=factorial(n) function f=factorial(n) ## Initialize the output f=1; ## Check whether the input is correct if ( (n<0) || (rem(n,1)~=0) ) printf("n cannot be a negative number. Exiting...\n"); return endif for num=1:n f*=num; endfor endfunction

NEWTON’S METHOD FOR MINIMUM

##Newton's Method to find ##the minimum of the function F(x)=(x-2)^4-9 ##with the initial guess xmin=1.0 ##Constants and initializations xmin=[]; ##The empty array of x that minimizes the F(x) xmin(1)=1.0; ##Initial value of the xmin Fmin=[]; ##Minimum values of F(x) x=0.0:0.1:4.0; ##Only for plotting purposes F=[]; ##Our examined Function evaluated on x-space Fp=[]; ##First derivative of F(x) wrt x Fpp=[]; ##Second derivative o F(x) wrt x NSteps=50; ##Step number of iteration ##Algorithm for n=1:NSteps Fmin(n)=(xmin(n)-2)^4-9; Fp(n)=4*(xmin(n)-2)^3; Fpp(n)=12*(xmin(n)-2)^2; xmin(n+1)=xmin(n)-Fp(n)/Fpp(n); Fmin(n+1)=(xmin(n+1)-2)^4-9; endfor printf("x*, at which F(x) is minimum, is %1.6f\n",xmin(n+1)) printf("Minimum of F(x) is %1.6f\n",Fmin(n+1)) F=(x-2).^4-9; subplot(2,1,1) plot(x,F) title('Newton^,s Method-F(x) vs x'); xlabel('x'); ylabel('F(x)'); text(2,-7,'\downarrow') text(1.7,-5.6,'(xmin,Fm...