Skip to main content

STIFFNESS OF BENDING STRINGS


## A 'realistic', 'non-elastic' string, which responses to any
## bending and has stifness. This script takes in the previous
## and the present profiles and iterates to find
## the profile in the next time step. The ratio 'r' is not 1
## like in the 'non-realistic' string since the speed of the wave
## always less than the speed of the string it should be less than 1
## for best and most stable solution
##constants
dx=1e-2 ## Spatial increment (m)
L=2 ## Length of the string (m)
M=L/dx ## Dimensionless partition
r=0.25 ## Famous dimensionless ratio
E=1e-4 ## Dimensionless stiffnes
x=-1:dx:1;
l=length(x);
x0=0.5;
k=1e2;
## Set up the initial profile
y=initial_profile(x,x0,k);
plot(x,y)
pause
## Impose the time boundary condition
ynow=y;
yprev=y;
ynow(1)=ynow(2)=0
Nsteps=2000;
for n=3:Nsteps
ynow(Nsteps-1)=ynow(Nsteps-2)=0;
ynext=propagate_stiff(ynow,yprev,r);
plot(x,ynext,';;')
axis([-1.05,1.05,-1.1,1.1])
pause(0);
endfor

Comments

Popular posts from this blog

NEWTON-RAPSON METHOD-8th degree Legendre polynomial

## Newton-Rapson Method to the smallest non negative root
## of the 8th degree Legendre Polynomial
## P8(x)=(1/128)(6435x^8-12012x^6+6930x^4-1260x^2+35)
## where -1<=x<=1.
## for the smallest non negative root, we can ignore
## all the terms except the last two by truncated
## the function to be zero and find
## x=0.167 as the initial smallest non negative
## root.
##Constants and initializations
x=[]; ## Empty array for the iterated x roots
x(1)=0.16700000; ## Initial guess to begin the iteration for the
## smallest non-negative root.
L8=[]; ## Empty array for the Legendre polynomial
L8p=[]; ## Empty array for the derivative of the Legendre polynomial
for i=1:100
##The value of the function at x
L8(i)=(1/128)*(6435*x(i)^8-12012*x(i)^6+6930*x(i)^4-1260*x(i)^2+35);
##The value of the derivative of the function at x
L8p(i)=(1/128)*(6435*8*x(i)^7-12012*6*x(i)^5+6930*4*x(i)^3-1260*2*x(i));
x(i+1)=x(i)-L8(i)/L8p(i); ## the iteration
endfor
## For plot let's define a new variable…

Second Harmonic Generation

gnuplot> set xrange [-180:180] gnuplot> set yrange [-180:180] gnuplot> set pm3d gnuplot> set hidden3d  gnuplot> set title 'SHG' gnuplot> splot sin(cos(x*pi/180))*sin(cos(x*pi/180))/(cos(x*pi/180)*cos(x*pi/180))*sin(cos(y*pi/180))*sin(cos(y*pi/180))/(cos(y*pi/180)*cos(y*pi/180)) title 'N=1
'