Skip to main content

TOTAL DISPLACEMENT OF LOOPLESS RANDOM WALK


## A for good and evil as well as loopless
## total displacement function of random walk
## that takes in the step numbers as an
## argument and returns the displacement
## of the rnd walker.Note that the probabilities
## to turn rigth and left are equal but the left
## step is twice the rigth step.
## Usage : rw_uneven(N)
function rw_uneven(N)
rn=rand(N,1); ## If the element of a random vector
r=-(rn<0.5); ## is smaller than 0.5, then return -1,
li=find(r == 0); ## Else return 2(equal probability).
r(li)=2;
x=sum(r) ## total displacement
endfunction

Comments

Popular posts from this blog

Simple Euler Method

##Usage:Call Octave from terminal ##and then call EulerMethodUmitAlkus.m ##from octave and finally ##press enter. That's all. ##Simple Euler Method ##Constants and initializations x=[]; ## initial empty vector for x y=[]; ## initial empty vector for y x(1)=1; ## initial value of x y(1)=1; ## initial value of y h=1E-3; ## increment in x dery=[]; ## 1st derivative of y wrt x n=1; ## inital loop index for while ## enter the while loop for the interval x=[1,2] while (x(n)<=2) x(n+1)=x(n)+h; dery(n+1)=x(n)*x(n)-2*y(n)/x(n); ##given y(n+1)=y(n)+h*dery(n); ##Euler method n++; endwhile ##exit from the 1st while loop ##Modified Euler Method ##Constant and initializations ymid=[]; ## empty vector function evaluated at x midpoint xmid=[]; ## empty vector func. of midpoints in x ymid(1)=1; ## inital value for ymid. derymid=[]; ## derivative of y at midpoints ##Enter the 2nd while loop n=1; while (x(n)<=2) xmid(n)=x(n)+h/2; derymid(n)=xmid(n)*xmid(n)-2*ymid(...

NEWTON’S METHOD FOR MINIMUM

##Newton's Method to find ##the minimum of the function F(x)=(x-2)^4-9 ##with the initial guess xmin=1.0 ##Constants and initializations xmin=[]; ##The empty array of x that minimizes the F(x) xmin(1)=1.0; ##Initial value of the xmin Fmin=[]; ##Minimum values of F(x) x=0.0:0.1:4.0; ##Only for plotting purposes F=[]; ##Our examined Function evaluated on x-space Fp=[]; ##First derivative of F(x) wrt x Fpp=[]; ##Second derivative o F(x) wrt x NSteps=50; ##Step number of iteration ##Algorithm for n=1:NSteps Fmin(n)=(xmin(n)-2)^4-9; Fp(n)=4*(xmin(n)-2)^3; Fpp(n)=12*(xmin(n)-2)^2; xmin(n+1)=xmin(n)-Fp(n)/Fpp(n); Fmin(n+1)=(xmin(n+1)-2)^4-9; endfor printf("x*, at which F(x) is minimum, is %1.6f\n",xmin(n+1)) printf("Minimum of F(x) is %1.6f\n",Fmin(n+1)) F=(x-2).^4-9; subplot(2,1,1) plot(x,F) title('Newton^,s Method-F(x) vs x'); xlabel('x'); ylabel('F(x)'); text(2,-7,'\downarrow') text(1.7,-5.6,'(xmin,Fm...

One Dimensional Harmonic Oscillator-Numerov Method

x=[]; h0=1; M=4; N=M+1; x(1)=0; x(N)=x(1)+h0*M; x=x(1):h0:x(N) A=zeros(N); A(1,1)=-2*(5*(x(N)*h0)^2/12+1); A(N,N)=-2*(5*(x(1)*h0)^2/12+1); A(1,2)=1-(x(M)*h0)^2)/12; A(N,M)=1-(x(2)*h0)^2)/12; B=zeros(N); B(1,1)=B(N,N)=-10*(h0^2)/6; B(1,2)=B(N,M)=-(h0^2)/6; for i=2:M B(i,i)=-10*(h0^2)/6; B(i,i-1)=B(i,i+1)=-(h0^2)/6; A(i,i)=-2*(5*(x(N+1-i)*h0)^2/12+1); A(i,i+1)=1-(x(N-i)*h0)^2)/12; A(i,i-1)=1-(x(N+2-i)*h0)^2)/12; end A B