Skip to main content

SINUSOIDALY DRIVEN STRING


## Takes in the previous and the present profiles of the string and
## iterates to find the profile in the next time step.
function ynext=propagate_driven(ynow,yprev,r,omega,A,n,dt)
## initialization, boundary condition
ynext=ynow;
## takes in length(ynow) as an argument
## since one end of the string is driven sinuosidaly
## omega is the angular frequency of the driven force
## n is the time index, n*dt is t(n)
ynext(length(ynow))=A*sin(omega*n*dt);
## entering the loop
for i=2:length(ynow)-1
ynext(i) = 2*(1-r^2)*ynow(i)-yprev(i)+r^2*(ynow(i+1)+ynow(i-1));
endfor
endfunction

Comments

Popular posts from this blog

Simple Euler Method

##Usage:Call Octave from terminal ##and then call EulerMethodUmitAlkus.m ##from octave and finally ##press enter. That's all. ##Simple Euler Method ##Constants and initializations x=[]; ## initial empty vector for x y=[]; ## initial empty vector for y x(1)=1; ## initial value of x y(1)=1; ## initial value of y h=1E-3; ## increment in x dery=[]; ## 1st derivative of y wrt x n=1; ## inital loop index for while ## enter the while loop for the interval x=[1,2] while (x(n)<=2) x(n+1)=x(n)+h; dery(n+1)=x(n)*x(n)-2*y(n)/x(n); ##given y(n+1)=y(n)+h*dery(n); ##Euler method n++; endwhile ##exit from the 1st while loop ##Modified Euler Method ##Constant and initializations ymid=[]; ## empty vector function evaluated at x midpoint xmid=[]; ## empty vector func. of midpoints in x ymid(1)=1; ## inital value for ymid. derymid=[]; ## derivative of y at midpoints ##Enter the 2nd while loop n=1; while (x(n)<=2) xmid(n)=x(n)+h/2; derymid(n)=xmid(n)*xmid(n)-2*ymid(...