Skip to main content

One Dimensional Harmonic Oscillator-Numerov Method

x=[];
h0=1;
M=4;
N=M+1;
x(1)=0;
x(N)=x(1)+h0*M;
x=x(1):h0:x(N)
A=zeros(N);
A(1,1)=-2*(5*(x(N)*h0)^2/12+1);
A(N,N)=-2*(5*(x(1)*h0)^2/12+1);
A(1,2)=1-(x(M)*h0)^2)/12;
A(N,M)=1-(x(2)*h0)^2)/12;
B=zeros(N);
B(1,1)=B(N,N)=-10*(h0^2)/6;
B(1,2)=B(N,M)=-(h0^2)/6;
for i=2:M
B(i,i)=-10*(h0^2)/6;
B(i,i-1)=B(i,i+1)=-(h0^2)/6;
A(i,i)=-2*(5*(x(N+1-i)*h0)^2/12+1);
A(i,i+1)=1-(x(N-i)*h0)^2)/12;
A(i,i-1)=1-(x(N+2-i)*h0)^2)/12;
end
A
B

Comments

Popular posts from this blog

Simple Euler Method

##Usage:Call Octave from terminal ##and then call EulerMethodUmitAlkus.m ##from octave and finally ##press enter. That's all. ##Simple Euler Method ##Constants and initializations x=[]; ## initial empty vector for x y=[]; ## initial empty vector for y x(1)=1; ## initial value of x y(1)=1; ## initial value of y h=1E-3; ## increment in x dery=[]; ## 1st derivative of y wrt x n=1; ## inital loop index for while ## enter the while loop for the interval x=[1,2] while (x(n)<=2) x(n+1)=x(n)+h; dery(n+1)=x(n)*x(n)-2*y(n)/x(n); ##given y(n+1)=y(n)+h*dery(n); ##Euler method n++; endwhile ##exit from the 1st while loop ##Modified Euler Method ##Constant and initializations ymid=[]; ## empty vector function evaluated at x midpoint xmid=[]; ## empty vector func. of midpoints in x ymid(1)=1; ## inital value for ymid. derymid=[]; ## derivative of y at midpoints ##Enter the 2nd while loop n=1; while (x(n)<=2) xmid(n)=x(n)+h/2; derymid(n)=xmid(n)*xmid(n)-2*ymid(...

FACTORIAL

## Function that calculates the factorial of a number ## Usage : f=factorial(n) function f=factorial(n) ## Initialize the output f=1; ## Check whether the input is correct if ( (n<0) || (rem(n,1)~=0) ) printf("n cannot be a negative number. Exiting...\n"); return endif for num=1:n f*=num; endfor endfunction

REALISTIC AND NON-REALISTIC STRINGS

## A 'realistic', 'non-elastic' string, which responses to any ## bending and has stifness. This script takes in the previous ## and the present profiles and iterates to find ## the profile in the next time step. The ratio 'r' is not 1 ## like in the 'non-realistic' string since the speed of the wave ## always less than the speed of the string it should be less than 1 ## for best and most stable solution ##constants dx=1e-2 ## Spatial increment (m) L=2 ## Length of the string (m) M=L/dx ## Dimensionless partition E=1e-4 ## Dimensionless stiffnes function ynext=propagate_stiff(ynow,yprev,r) ## Quick and dirty way to fix boundary conditions -- for each step ## they are the same as the previous step. ynext=ynow; ynow(1)=ynow(2)=0; ##Entering the loop for i=3:length(ynow)-1 ## boundary condition ynow(length(ynow)-1)=ynow(length(ynow)-2)=0; ## Divide the ynext with many terms into three parts for easiness ynext(i)=(2−(2*r^2)−(6*E*(r^2)*...