Skip to main content

One Dimensional Harmonic Oscillator-Numerov Method

x=[];
h0=1;
M=4;
N=M+1;
x(1)=0;
x(N)=x(1)+h0*M;
x=x(1):h0:x(N)
A=zeros(N);
A(1,1)=-2*(5*(x(N)*h0)^2/12+1);
A(N,N)=-2*(5*(x(1)*h0)^2/12+1);
A(1,2)=1-(x(M)*h0)^2)/12;
A(N,M)=1-(x(2)*h0)^2)/12;
B=zeros(N);
B(1,1)=B(N,N)=-10*(h0^2)/6;
B(1,2)=B(N,M)=-(h0^2)/6;
for i=2:M
B(i,i)=-10*(h0^2)/6;
B(i,i-1)=B(i,i+1)=-(h0^2)/6;
A(i,i)=-2*(5*(x(N+1-i)*h0)^2/12+1);
A(i,i+1)=1-(x(N-i)*h0)^2)/12;
A(i,i-1)=1-(x(N+2-i)*h0)^2)/12;
end
A
B

Comments

Popular posts from this blog

NEWTON-RAPSON METHOD-8th degree Legendre polynomial

## Newton-Rapson Method to the smallest non negative root
## of the 8th degree Legendre Polynomial
## P8(x)=(1/128)(6435x^8-12012x^6+6930x^4-1260x^2+35)
## where -1<=x<=1.
## for the smallest non negative root, we can ignore
## all the terms except the last two by truncated
## the function to be zero and find
## x=0.167 as the initial smallest non negative
## root.
##Constants and initializations
x=[]; ## Empty array for the iterated x roots
x(1)=0.16700000; ## Initial guess to begin the iteration for the
## smallest non-negative root.
L8=[]; ## Empty array for the Legendre polynomial
L8p=[]; ## Empty array for the derivative of the Legendre polynomial
for i=1:100
##The value of the function at x
L8(i)=(1/128)*(6435*x(i)^8-12012*x(i)^6+6930*x(i)^4-1260*x(i)^2+35);
##The value of the derivative of the function at x
L8p(i)=(1/128)*(6435*8*x(i)^7-12012*6*x(i)^5+6930*4*x(i)^3-1260*2*x(i));
x(i+1)=x(i)-L8(i)/L8p(i); ## the iteration
endfor
## For plot let's define a new variable…

Second Harmonic Generation

gnuplot> set xrange [-180:180] gnuplot> set yrange [-180:180] gnuplot> set pm3d gnuplot> set hidden3d  gnuplot> set title 'SHG' gnuplot> splot sin(cos(x*pi/180))*sin(cos(x*pi/180))/(cos(x*pi/180)*cos(x*pi/180))*sin(cos(y*pi/180))*sin(cos(y*pi/180))/(cos(y*pi/180)*cos(y*pi/180)) title 'N=1
'