Skip to main content

One Dimensional Harmonic Oscillator-Numerov Method

x=[];
h0=1;
M=4;
N=M+1;
x(1)=0;
x(N)=x(1)+h0*M;
x=x(1):h0:x(N)
A=zeros(N);
A(1,1)=-2*(5*(x(N)*h0)^2/12+1);
A(N,N)=-2*(5*(x(1)*h0)^2/12+1);
A(1,2)=1-(x(M)*h0)^2)/12;
A(N,M)=1-(x(2)*h0)^2)/12;
B=zeros(N);
B(1,1)=B(N,N)=-10*(h0^2)/6;
B(1,2)=B(N,M)=-(h0^2)/6;
for i=2:M
B(i,i)=-10*(h0^2)/6;
B(i,i-1)=B(i,i+1)=-(h0^2)/6;
A(i,i)=-2*(5*(x(N+1-i)*h0)^2/12+1);
A(i,i+1)=1-(x(N-i)*h0)^2)/12;
A(i,i-1)=1-(x(N+2-i)*h0)^2)/12;
end
A
B

Comments

Popular posts from this blog

SIMPLE AND MODIFIED EULER METHOD

##Usage:Call Octave from terminal ##and then call EulerMethodUmitAlkus.m ##from octave and finally ##press enter. That's all. ##Simple Euler Method ##Constants and initializations x=[]; ## initial empty vector for x y=[]; ## initial empty vector for y x(1)=1; ## initial value of x y(1)=1; ## initial value of y h=1E-3; ## increment in x dery=[]; ## 1st derivative of y wrt x dery(1)=0;## 1st entry of dery n=1; ## inital loop index for while ## enter the while loop for the interval x=[1,2] while (x(n)<=2) x(n+1)=x(n)+h; dery(n+1)=x(n)*x(n)-2*y(n)/x(n); ##given y(n+1)=y(n)+h*dery(n+1); ##Euler method n++; endwhile ##exit from the 1st while loop ##Modified Euler Method ##Constant and initializations x(1)=1; ## beginnig of the interval [1,2] ymod(1)=1; ## inital value for modified y. ymid=[]; ## empty vector function evaluated at x midpoint xmid=[]; ## empty vector func. of midpoints of the interval h in x-axis. derymod=[]; ## modified derivatives of ymod

NEWTON-RAPSON METHOD-8th degree Legendre polynomial

## Newton-Rapson Method to the smallest non negative root ## of the 8th degree Legendre Polynomial ## P8(x)=(1/128)(6435x^8-12012x^6+6930x^4-1260x^2+35) ## where -1<=x<=1. ## for the smallest non negative root, we can ignore ## all the terms except the last two by truncated ## the function to be zero and find ## x=0.167 as the initial smallest non negative ## root. ##Constants and initializations x=[]; ## Empty array for the iterated x roots x(1)=0.16700000; ## Initial guess to begin the iteration for the ## smallest non-negative root. L8=[]; ## Empty array for the Legendre polynomial L8p=[]; ## Empty array for the derivative of the Legendre polynomial for i=1:100 ##The value of the function at x L8(i)=(1/128)*(6435*x(i)^8-12012*x(i)^6+6930*x(i)^4-1260*x(i)^2+35); ##The value of the derivative of the function at x L8p(i)=(1/128)*(6435*8*x(i)^7-12012*6*x(i)^5+6930*4*x(i)^3-1260*2*x(i)); x(i+1)=x(i)-L8(i)/L8p(i); ## the iteration endfor ## For plot let's