Skip to main content

FACTORIAL FOR KEPLER’S MOTION


##Constants and initializations
ecc=0.1; ## Eccentricity
M=24.851090; ## Mean anomaly(degrees)
Mr=M*pi/180; ## Mean anomaly (rads)
ser=[]; ## Series in E
jser=[]; ## Bessel function
for m=1:100
for n=0:100
jser(n+1)=((-1)^n)*((m*ecc/2)^(2*n+m))/(factorial(n)*factorial(m+n));
jser(n+1)+=jser(n+1);
endfor
ser(m)=(1/m)*jser(n+1)*sin(m*Mr);
ser(m)+=ser(m);
endfor
E=M+2*ser(m);
save -text FACTORIALKEPLER.dat
printf('We find E to be %f. This is the answer of Q1(c)\n',E);

Comments

Popular posts from this blog

NEWTON-RAPSON METHOD FOR HEAT FLOW

##Constants and initializations
a=5.67E-8; ## Stefan-Boltzman constant[Watt/meter^2Kelvin^4]
e=0.8; ## Rod surface emissivity [Dimensionless]
h=20; ## Heat transfer coefficient of air flow [W/m^2-K]
Tinf=Ts=25; ## Temperature of air and the walls of the close[Celcius]
D=0.1; ## Diameter of the rod[meter]
I2R=100; ## Electric power dissipated in rod (Ohmic Heat)[W]
T=[]; ## Temperature of the rod[*C]
T(1)=25; ## Initial guess of the temperature of the rod[*C]
Q=[]; ## Heat function [W]
Qp=[]; ## First derivative of Q wrt T [W/C*].
for i=1:100
Q(i)=pi*D*(h*(T(i)-Tinf)+e*a*(T(i)^4-Ts^4))-I2R;
Qp(i)=pi*D*(h+4*e*a*T(i)^3);
T(i+1)=T(i)-Q(i)/Qp(i); ## Newton-Rapson Method
endfor
printf('The steady state temperature is %f\n',T(i+1))
save -text HeatFlowTemp.dat
## The plot
t=1:100; ##temperature
for n=1:100
H(n)=pi*D*(h*(t(n)-Tinf)+e*a*(t(n)^4-Ts^4))-I2R;
endfor
plot(t,H)
xlabel('T(Celcius)');
ylabel('Q(Watt)');
legend('Q(T)');
title('Heat flow vs Temperatu…