Skip to main content

NONUNFORM SOUND WAVE GENERATOR


## a script for a sound wave source made up of two different masses ##seperated in the middle. Let the rigth part is lighter than the
##left one that ensures that the ligther is faster, and so has
##greater r since r=cdt/dx which is dimensionless(ratio).
dx=1e-2; ## Increment in the horizontal distance (m)
c1=300; ## speed of the left one (m/s)
c2=500; ## Speed of the rigth one (m/s)
dt=dx/max(c1,c2); ## Increment in time (s). The max c, the min dt.
r1=c1*dt/dx; ## Ratio r for the left one
r2=c2*dt/dx; ## Ration r for the right one
x=-1:dx:1; ## same as the string_fixed
l=length(x);
x0=0.5;
k=1e2;
## Inital profile(return to guassuian distibution)
y=initial_profile(x,x0,k);
axis([-1.05,1.05,-1.1,1.1])
plot(x,y,'r;;',[0 0],[-1.1 1.1],'r-;;')
pause
## Boundary conditions while t=dtn=0
ynow=y;
yprev=y;
N=100;
for n=1:N
ynext=propagate_two_parts(ynow,yprev,r1,r2); ## calling the prepared
## function
plot(x,ynext,';;',[0 0],[-1.1 1.1],'r-;;')
axis([-1.05,1.05,-1.1,1.1])
pause(0);
yprev=ynow;
ynow=ynext;
endfor

Comments

Popular posts from this blog

NEWTON-RAPSON METHOD-8th degree Legendre polynomial

## Newton-Rapson Method to the smallest non negative root
## of the 8th degree Legendre Polynomial
## P8(x)=(1/128)(6435x^8-12012x^6+6930x^4-1260x^2+35)
## where -1<=x<=1.
## for the smallest non negative root, we can ignore
## all the terms except the last two by truncated
## the function to be zero and find
## x=0.167 as the initial smallest non negative
## root.
##Constants and initializations
x=[]; ## Empty array for the iterated x roots
x(1)=0.16700000; ## Initial guess to begin the iteration for the
## smallest non-negative root.
L8=[]; ## Empty array for the Legendre polynomial
L8p=[]; ## Empty array for the derivative of the Legendre polynomial
for i=1:100
##The value of the function at x
L8(i)=(1/128)*(6435*x(i)^8-12012*x(i)^6+6930*x(i)^4-1260*x(i)^2+35);
##The value of the derivative of the function at x
L8p(i)=(1/128)*(6435*8*x(i)^7-12012*6*x(i)^5+6930*4*x(i)^3-1260*2*x(i));
x(i+1)=x(i)-L8(i)/L8p(i); ## the iteration
endfor
## For plot let's define a new variable…

Second Harmonic Generation

gnuplot> set xrange [-180:180] gnuplot> set yrange [-180:180] gnuplot> set pm3d gnuplot> set hidden3d  gnuplot> set title 'SHG' gnuplot> splot sin(cos(x*pi/180))*sin(cos(x*pi/180))/(cos(x*pi/180)*cos(x*pi/180))*sin(cos(y*pi/180))*sin(cos(y*pi/180))/(cos(y*pi/180)*cos(y*pi/180)) title 'N=1
'