Skip to main content

PRIME OR NOT


## A funtion that takes a number
## in as an argument and returns
## the output p=1 if it is prime
## otherwise returns p=0.
function prime_or_not(num)
p=1; ## assume the number is prime.
div=2; ## the smallest divisor.
## since 2*num/2> num. Forbidden
Nsteps=num/2 ; ## Interval of division: the half
## of the num end itself
for i= div:Nsteps ## to divide al the numbers less than
## num/2.
if(rem(num,i)==0) ## any prime num cannot be
## divided with an integer.
p=0; ## otherwise exit the loop.
break;
endif
endfor
if(p == 1) ## prints the result
p=1
else
p=0
endif
endfunction

Comments

Popular posts from this blog

NEWTON-RAPSON METHOD FOR HEAT FLOW

##Constants and initializations
a=5.67E-8; ## Stefan-Boltzman constant[Watt/meter^2Kelvin^4]
e=0.8; ## Rod surface emissivity [Dimensionless]
h=20; ## Heat transfer coefficient of air flow [W/m^2-K]
Tinf=Ts=25; ## Temperature of air and the walls of the close[Celcius]
D=0.1; ## Diameter of the rod[meter]
I2R=100; ## Electric power dissipated in rod (Ohmic Heat)[W]
T=[]; ## Temperature of the rod[*C]
T(1)=25; ## Initial guess of the temperature of the rod[*C]
Q=[]; ## Heat function [W]
Qp=[]; ## First derivative of Q wrt T [W/C*].
for i=1:100
Q(i)=pi*D*(h*(T(i)-Tinf)+e*a*(T(i)^4-Ts^4))-I2R;
Qp(i)=pi*D*(h+4*e*a*T(i)^3);
T(i+1)=T(i)-Q(i)/Qp(i); ## Newton-Rapson Method
endfor
printf('The steady state temperature is %f\n',T(i+1))
save -text HeatFlowTemp.dat
## The plot
t=1:100; ##temperature
for n=1:100
H(n)=pi*D*(h*(t(n)-Tinf)+e*a*(t(n)^4-Ts^4))-I2R;
endfor
plot(t,H)
xlabel('T(Celcius)');
ylabel('Q(Watt)');
legend('Q(T)');
title('Heat flow vs Temperatu…