Skip to main content

MINIMUM OF GAMMA FUNCTION

## This string finds the minimum of the Gamma function
## integral(x^(alpha-1)*exp(-x))dx) (x=[0,infinity])
## in the interval 0<alpha<4.
dx=1E-2; ## Increment in x
x=0:dx:100; ## x array
Gamma=[]; ## Empty Gamma function
alpha=0.00:dx:4.00; ## The independent variable of Gamma function
for i=1:length(alpha)
## Call the trapezoid function to
## calculate all entries of Gamma function
## corresponding to entries of alpha
f=x.^(alpha(i)-1).*exp(-x); ## integrand of Gamma function
Gamma(i)=trapezoid(x,f);
endfor
plot(alpha,Gamma);
title('Gamma values vs alpha');
legend('Gamma(alpha)');
xlabel('alpha');
ylabel('Gamma');
## The following 'for loop' finds the minimum value of Gamma
## and the corresponding alpha value.
minimum=Gamma(1);
for n=1:length(Gamma)
if(minimum>Gamma(n))
minimum=Gamma(n);
n; ## The array index where the minimum of Gamma is.
m=alpha(n); ## The alpha value corresponding to the min of Gamma
endif
endfor;
printf('Minimum of the Gamma Function in the interval 0<alpha<4 is %f\n for the alpha=%f\n' ,minimum,m)
print('-dpsc',MINGAMMA.ps');
save -text MINGAMMA.dat

Comments

Popular posts from this blog

Simple Euler Method

##Usage:Call Octave from terminal ##and then call EulerMethodUmitAlkus.m ##from octave and finally ##press enter. That's all. ##Simple Euler Method ##Constants and initializations x=[]; ## initial empty vector for x y=[]; ## initial empty vector for y x(1)=1; ## initial value of x y(1)=1; ## initial value of y h=1E-3; ## increment in x dery=[]; ## 1st derivative of y wrt x n=1; ## inital loop index for while ## enter the while loop for the interval x=[1,2] while (x(n)<=2) x(n+1)=x(n)+h; dery(n+1)=x(n)*x(n)-2*y(n)/x(n); ##given y(n+1)=y(n)+h*dery(n); ##Euler method n++; endwhile ##exit from the 1st while loop ##Modified Euler Method ##Constant and initializations ymid=[]; ## empty vector function evaluated at x midpoint xmid=[]; ## empty vector func. of midpoints in x ymid(1)=1; ## inital value for ymid. derymid=[]; ## derivative of y at midpoints ##Enter the 2nd while loop n=1; while (x(n)<=2) xmid(n)=x(n)+h/2; derymid(n)=xmid(n)*xmid(n)-2*ymid(...