Skip to main content

FREE FALL


## A function, free fall, that takes in h (in metres), and
## returns the final velocity of the ball at the
## time step just before it touches the ground and makes
## a plot of velocity versus time.
function freefall(h)
## constants and initializations
v=0; ## initial velocity(at rest) [m/sec]
y=h; ## initial altitude of the ball from the ground [m]
t=0; ## initial time[sec ]
B1=0.05; ## Coeff of the term prop to v [kg/sec]
B2=6E-4; ## Coeff of the term prop to v^2 [kg/m]
m=0.25; ## Mass of the ball [kg]
g=9.8; ## Gravitational acceleration [m/sec^2]
dt=0.1; ## Time increment [sec]
n=1; ## Initialize the loop index[dimensionless]
## Run the loop or iterate until the vertical component is
## smaller than zero.
while (y(n)>0);
## decrease the altitude in each step
y=[y;y(n)+v(n)*dt]; ## and accumlate the results in the array
## of the vertical displacement.
## increase the time in each step
t=[t;t(n)+dt]; ## and accumlate the results in the array
## of the time for the time axis in the plot.
## increase the vertical velocity
v=[v;v(n)-dt*(g-B1*v(n)/m+B2*v(n)^2/m)]; ## in each step and
## accumlate the results
## in the array of vertical velocity.
n++; ## increase n by 1 in each step
endwhile
vfinal=-v(n) ## magnitude of the final velocity of the ball at the
## time step just before it touches the ground
plot(t,-v,';drag;') ## plot of the magnitude of the velocity versus time.
endfunction

Comments

Popular posts from this blog

NEWTON-RAPSON METHOD FOR HEAT FLOW

##Constants and initializations
a=5.67E-8; ## Stefan-Boltzman constant[Watt/meter^2Kelvin^4]
e=0.8; ## Rod surface emissivity [Dimensionless]
h=20; ## Heat transfer coefficient of air flow [W/m^2-K]
Tinf=Ts=25; ## Temperature of air and the walls of the close[Celcius]
D=0.1; ## Diameter of the rod[meter]
I2R=100; ## Electric power dissipated in rod (Ohmic Heat)[W]
T=[]; ## Temperature of the rod[*C]
T(1)=25; ## Initial guess of the temperature of the rod[*C]
Q=[]; ## Heat function [W]
Qp=[]; ## First derivative of Q wrt T [W/C*].
for i=1:100
Q(i)=pi*D*(h*(T(i)-Tinf)+e*a*(T(i)^4-Ts^4))-I2R;
Qp(i)=pi*D*(h+4*e*a*T(i)^3);
T(i+1)=T(i)-Q(i)/Qp(i); ## Newton-Rapson Method
endfor
printf('The steady state temperature is %f\n',T(i+1))
save -text HeatFlowTemp.dat
## The plot
t=1:100; ##temperature
for n=1:100
H(n)=pi*D*(h*(t(n)-Tinf)+e*a*(t(n)^4-Ts^4))-I2R;
endfor
plot(t,H)
xlabel('T(Celcius)');
ylabel('Q(Watt)');
legend('Q(T)');
title('Heat flow vs Temperatu…