Skip to main content

TOTAL DISPLACEMENT OF LOOPLESS RANDOM WALK


## A for good and evil as well as loopless
## total displacement function of random walk
## that takes in the step numbers as an
## argument and returns the displacement
## of the rnd walker.Note that the probabilities
## to turn rigth and left are equal but the left
## step is twice the rigth step.
## Usage : rw_uneven(N)
function rw_uneven(N)
rn=rand(N,1); ## If the element of a random vector
r=-(rn<0.5); ## is smaller than 0.5, then return -1,
li=find(r == 0); ## Else return 2(equal probability).
r(li)=2;
x=sum(r) ## total displacement
endfunction

Comments

Popular posts from this blog

Simple Euler Method

##Usage:Call Octave from terminal ##and then call EulerMethodUmitAlkus.m ##from octave and finally ##press enter. That's all. ##Simple Euler Method ##Constants and initializations x=[]; ## initial empty vector for x y=[]; ## initial empty vector for y x(1)=1; ## initial value of x y(1)=1; ## initial value of y h=1E-3; ## increment in x dery=[]; ## 1st derivative of y wrt x n=1; ## inital loop index for while ## enter the while loop for the interval x=[1,2] while (x(n)<=2) x(n+1)=x(n)+h; dery(n+1)=x(n)*x(n)-2*y(n)/x(n); ##given y(n+1)=y(n)+h*dery(n); ##Euler method n++; endwhile ##exit from the 1st while loop ##Modified Euler Method ##Constant and initializations ymid=[]; ## empty vector function evaluated at x midpoint xmid=[]; ## empty vector func. of midpoints in x ymid(1)=1; ## inital value for ymid. derymid=[]; ## derivative of y at midpoints ##Enter the 2nd while loop n=1; while (x(n)<=2) xmid(n)=x(n)+h/2; derymid(n)=xmid(n)*xmid(n)-2*ymid(...