Skip to main content

INITIAL POSITIONS OF DIFFUSIVE PARTICLES

## A function takes in the number of diffusive particle
## as an argument and gets the initial positions in 2D
## as an outcome by inserting them in a square.
function p=initial_positions7(Nwalkers)
dt=3; ## to extend the interval of axes.
a=sqrt(Nwalkers); ## step size.
n=(a-1)/2; ## max range in the x and y axes.
if(rem(a,2)~=1) ## Nwalkers must be odd squared.
printf("The number you have entered is not an odd squared. Exiting...\n");
return
endif
n=(a-1)/2; ## max range in the x and y axes.
x=[-n:n]'; ## integer interval in the x axis.
p=zeros(a,2); ## initialize the positions of 'a' walkers.
p(:,1)=x; ## equate the column of p to x vector.
p=repmat(p,a,1); ## replicate positions of 'a' walkers to get a*a walkers.
for i=1:a:Nwalkers ## the loop through the number walkers.
m=(i+a-1)/a; ## index get the entries of x resp.
p(i:i+a-1,2)=x(m) ; ## y components are a-fold degenerate.
endfor
plot(p(:,1),p(:,2),'b*;;')
axis(dt*[-n, n,-n,n])
endfunction

Comments

Popular posts from this blog

FACTORIAL

## Function that calculates the factorial of a number ## Usage : f=factorial(n) function f=factorial(n) ## Initialize the output f=1; ## Check whether the input is correct if ( (n<0) || (rem(n,1)~=0) ) printf("n cannot be a negative number. Exiting...\n"); return endif for num=1:n f*=num; endfor endfunction

Simple Euler Method

##Usage:Call Octave from terminal ##and then call EulerMethodUmitAlkus.m ##from octave and finally ##press enter. That's all. ##Simple Euler Method ##Constants and initializations x=[]; ## initial empty vector for x y=[]; ## initial empty vector for y x(1)=1; ## initial value of x y(1)=1; ## initial value of y h=1E-3; ## increment in x dery=[]; ## 1st derivative of y wrt x n=1; ## inital loop index for while ## enter the while loop for the interval x=[1,2] while (x(n)<=2) x(n+1)=x(n)+h; dery(n+1)=x(n)*x(n)-2*y(n)/x(n); ##given y(n+1)=y(n)+h*dery(n); ##Euler method n++; endwhile ##exit from the 1st while loop ##Modified Euler Method ##Constant and initializations ymid=[]; ## empty vector function evaluated at x midpoint xmid=[]; ## empty vector func. of midpoints in x ymid(1)=1; ## inital value for ymid. derymid=[]; ## derivative of y at midpoints ##Enter the 2nd while loop n=1; while (x(n)<=2) xmid(n)=x(n)+h/2; derymid(n)=xmid(n)*xmid(n)-2*ymid(...

REALISTIC AND NON-REALISTIC STRINGS

## A 'realistic', 'non-elastic' string, which responses to any ## bending and has stifness. This script takes in the previous ## and the present profiles and iterates to find ## the profile in the next time step. The ratio 'r' is not 1 ## like in the 'non-realistic' string since the speed of the wave ## always less than the speed of the string it should be less than 1 ## for best and most stable solution ##constants dx=1e-2 ## Spatial increment (m) L=2 ## Length of the string (m) M=L/dx ## Dimensionless partition E=1e-4 ## Dimensionless stiffnes function ynext=propagate_stiff(ynow,yprev,r) ## Quick and dirty way to fix boundary conditions -- for each step ## they are the same as the previous step. ynext=ynow; ynow(1)=ynow(2)=0; ##Entering the loop for i=3:length(ynow)-1 ## boundary condition ynow(length(ynow)-1)=ynow(length(ynow)-2)=0; ## Divide the ynext with many terms into three parts for easiness ynext(i)=(2−(2*r^2)−(6*E*(r^2)*...