Skip to main content

Equation of Motion of Proton (Coulomb Potential)

## A function of the solution of the path
## equation of a proton under the inverse
## square atraction field of an electron
## that takes in the initial seperation distance
## or the position r0 wrt center of the electron
## as an argument and returns the total time
## ttotal it takes for it to reach within 1.0m
## of the electron and plots the velocity v
## vs time graph. usage ttotal=coulomb(r0).
function coulomb(r0)
## constants and initializations
k=9e+9; ## coulomb field constant [Nm^2/C]
q=1.6e-19; ## electronic charge [C]
mp=1.7e-27; ## proton mass [m]
dt=1e-4;; ## increment in time [sec]
r=r0; ## initial seperation[m]
t=0; ## initial time [s]
v0=0; ## initial velocity [m/s]
v=v0; ## 1st entry of v array [m/s]
n=1; ## initialization of loop index
## since we have already n=0 in argument r0.
while(r(n)>0.1);
dr=v(n)*dt; ## increment that is decrease in r
## since v(n) will be negative below.
r=[r;r(n)+dr]; ## decreases r in each step and
## accumulates the results in r array.
dv=-k*q*q*dt/(mp*r(n)*r(n)); ## increment in v to make v more negative.
v=[v;v(n)+dv]; ## increases the magnitude of negative v in each step and
## accumulates the results in v array.
t=[t;t(n)+dt]; ## increases the time in each step and
## accumulates the results in t array
## for both time axis and ttotal.
n++; ## increase n by 1 in each step
endwhile
ttotal=t(n) ## print the last entry of t array gives total time.
plot(t,v,';;')
xlabel('time(sec)'); ## Ola yuppi! I've learned eventually
ylabel('velocity(m/sec)'); ## to label the axes :) happy end!
endfunction

Comments

Popular posts from this blog

FACTORIAL

## Function that calculates the factorial of a number ## Usage : f=factorial(n) function f=factorial(n) ## Initialize the output f=1; ## Check whether the input is correct if ( (n<0) || (rem(n,1)~=0) ) printf("n cannot be a negative number. Exiting...\n"); return endif for num=1:n f*=num; endfor endfunction

Simple Euler Method

##Usage:Call Octave from terminal ##and then call EulerMethodUmitAlkus.m ##from octave and finally ##press enter. That's all. ##Simple Euler Method ##Constants and initializations x=[]; ## initial empty vector for x y=[]; ## initial empty vector for y x(1)=1; ## initial value of x y(1)=1; ## initial value of y h=1E-3; ## increment in x dery=[]; ## 1st derivative of y wrt x n=1; ## inital loop index for while ## enter the while loop for the interval x=[1,2] while (x(n)<=2) x(n+1)=x(n)+h; dery(n+1)=x(n)*x(n)-2*y(n)/x(n); ##given y(n+1)=y(n)+h*dery(n); ##Euler method n++; endwhile ##exit from the 1st while loop ##Modified Euler Method ##Constant and initializations ymid=[]; ## empty vector function evaluated at x midpoint xmid=[]; ## empty vector func. of midpoints in x ymid(1)=1; ## inital value for ymid. derymid=[]; ## derivative of y at midpoints ##Enter the 2nd while loop n=1; while (x(n)<=2) xmid(n)=x(n)+h/2; derymid(n)=xmid(n)*xmid(n)-2*ymid(...

REALISTIC AND NON-REALISTIC STRINGS

## A 'realistic', 'non-elastic' string, which responses to any ## bending and has stifness. This script takes in the previous ## and the present profiles and iterates to find ## the profile in the next time step. The ratio 'r' is not 1 ## like in the 'non-realistic' string since the speed of the wave ## always less than the speed of the string it should be less than 1 ## for best and most stable solution ##constants dx=1e-2 ## Spatial increment (m) L=2 ## Length of the string (m) M=L/dx ## Dimensionless partition E=1e-4 ## Dimensionless stiffnes function ynext=propagate_stiff(ynow,yprev,r) ## Quick and dirty way to fix boundary conditions -- for each step ## they are the same as the previous step. ynext=ynow; ynow(1)=ynow(2)=0; ##Entering the loop for i=3:length(ynow)-1 ## boundary condition ynow(length(ynow)-1)=ynow(length(ynow)-2)=0; ## Divide the ynext with many terms into three parts for easiness ynext(i)=(2−(2*r^2)−(6*E*(r^2)*...