Skip to main content

DIFFUSION-RANDOM WALK

## the function that takes in the initial positions
## of random walkers and the number of steps as
## an argument and returns the final positions
## in 2D. The figure of the walkers after the comple-
## tion of the walk also plotted.
function f=diffusion(Nsteps)
f=[];
Nwalkers=9;
for i=1:Nsteps ## The loop through the number
## of steps each in walk.
p=initial_positions(Nwalkers); ## Initial squared location of all of the
## walkers at all steps.
for m=1:Nwalkers ## The loop through the desired
## number of walkers.
r=rand_disc_rev(N); ## Calling the rw generator
## function which will give column vector
f=[f;p+r] ## of each elements are either 1 or -1.
## Total displacement whose
## elements stems from the vector r.
endfor
f
endfor
plot(f(:,1),f(:,2),'r*;Dif;')
endfunction

Comments

Popular posts from this blog

Simple Euler Method

##Usage:Call Octave from terminal ##and then call EulerMethodUmitAlkus.m ##from octave and finally ##press enter. That's all. ##Simple Euler Method ##Constants and initializations x=[]; ## initial empty vector for x y=[]; ## initial empty vector for y x(1)=1; ## initial value of x y(1)=1; ## initial value of y h=1E-3; ## increment in x dery=[]; ## 1st derivative of y wrt x n=1; ## inital loop index for while ## enter the while loop for the interval x=[1,2] while (x(n)<=2) x(n+1)=x(n)+h; dery(n+1)=x(n)*x(n)-2*y(n)/x(n); ##given y(n+1)=y(n)+h*dery(n); ##Euler method n++; endwhile ##exit from the 1st while loop ##Modified Euler Method ##Constant and initializations ymid=[]; ## empty vector function evaluated at x midpoint xmid=[]; ## empty vector func. of midpoints in x ymid(1)=1; ## inital value for ymid. derymid=[]; ## derivative of y at midpoints ##Enter the 2nd while loop n=1; while (x(n)<=2) xmid(n)=x(n)+h/2; derymid(n)=xmid(n)*xmid(n)-2*ymid(...